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As an engineer I would like to challenge our thinking by asking a simple question. Does the 

evidence suggest that we are sufficiently prepared to realise, that is engineer, Large-Scale 

Complex IT Systems? 

 

To try and frame the context of the question and ultimately develop a personal argument that 

suggests we are currently unprepared, or at least under-prepared, I would like to look at 3 

aspects from an embedded system and software development standpoint. 

1) Firstly, where does current IT system complexity originate and how capable are we in 

dealing with systems we currently design 

2) Secondly, how well do we judge a viable solution, given an integrity criteria 

3) Thirdly, what are the models for future generation of systems of systems, and the 

factors that increase complexity 

 

So, Looking first at Current system complexity 

The overriding trend in 3 decades is unprecedented growth in everything electronic but 

significantly Information Technology. In fact it is fair to surmise that the solution has always 

been part of the problem. The ‘capability’ growth of electronics, both from a reliability 

standpoint, but more significantly from a computation standpoint has enabled engineers to 

provide solutions that increasingly improve the fidelity of the required operation - a direct 

factor in increasing system complexity - and allow us to push the boundaries of the system’s 

operating efficiency. 

 

From a real-time controls perspective, complexity jumped in the move from linear 

(continuous) systems and their inherent constraints, to the realisation of these systems by 

digital construction, which allowed us arbitrary and discontinuous relationships. This was the 

liberating step for flexibility… but the precipice with regards complexity. 

 

Similarly, in communications the need for autonomy and ‘healing’ in networked devices, has 

driven a significant increase in complexity over statically defined and deployed networks… 

but a feature we now expect as standard. 
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Unfortunately, real life is not simple… attempting to real-time model a simple fuel injector, 

across hydraulic, electro-magnetic and mechanical domains would involve not only the 

complex interaction of the systems in terms of actuation response, but the environmental 

factors, temperature, pressure along with the dynamic changes caused to these parameters 

during actuation, as well as mechanical wear-out, drift, original manufacturing tolerance 

compensation and lots more. 

 

As an engineer I value simplicity. Why? I can visualise how the product achieves its goals, 

and more readily understand any errant behaviour (and probably expect to be able to diagnose 

it, or even effect a repair!). But the champions of simplicity always seem to lose out to the 

finesse argument – unless it crosses some immediate major cost breakpoint. 

 

As a consumer I value a well-engineered complex product and the diversity, performance or 

flexibility it enables. Take the mobile phone… or is it a camera, pager, message service, 

calculator, alarm clock, diary, music player, broadcast radio receiver… and this list is for a 

simple offering! As consumers we seem to place value on the functionality – even when we 

don’t use it. 

 

So what continues to drive complexity today…lets just explore a modern automotive power 

plant – its controlled parameter is essentially generated torque. With the traditional ‘human-

in-the-loop’, the variation in torque required to achieve constant speed, yet mitigate varying 

conditions, is effected by pressing the throttle pedal harder.  

 

Today the throttle mechanism is just a ‘demand signal’ for motive torque… any ‘parasitic’ 

losses (for example in air-conditioning, power steering, alternator load, gearbox and 

transmission) have to be discounted and a suitable excess generation has to be summed into 

the demand…It is not that we consider it unreasonable for a human to ‘finesse’ the controls 

over a long period, but when you consider automation (e.g. cruise control in an automotive 

context, or constant propulsive thrust in an aero equivalent) the purity of motive torque or 

propulsive thrust defines the ideal, simple, control parameter interface.  

 

Of course given that we have real-time control we are able to deal with these changes as 

asynchronous transient behaviours for seamless, so-called ‘bumpless’, constant delivery by 

anticipatory control – even though that adds further complexity for transient behaviour. 
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The reality is that electronic control can deliver much more than ‘control’, it can  

1. faithfully reflect limitations (multi-dimensionally, constrained to the design envelope) 

2. monitor and diagnose itself (self-fulfilling as due to complexity, errant behaviour is no 

longer intellectually obvious) 

3. enforce regulatory and legislative behaviours (police the user).  

 

From modern electronics, but very definitely from IT, we expect increasing refinement at a 

lower cost with successive generations. We no longer accept ‘undiagnosed’ failure for 

anything other than cheap disposable commodities. 

 

But those jumps in complexity have passed, haven’t they? Well here are some metrics on 

simple system growth - In automotive engine control, complexity has been doubling every 4 

years since the advent of electronic control (irrespective of the mitigating actions to simplify). 

In aero engine control the doubling takes 7 years. 

 

So having looked at current methods and system growth, what of our confidence in 

judging viable solutions? What limits our view of viable solutions? I suggest it stems from a 

measure that we define as reliability (judged by availability, robustness, survivability or even 

freedom from errant behaviour depending on the regulation of your target market). 

 

Electronic component reliability is now almost immeasurably high. The implication being that 

high reliability (and high –integrity) systems are therefore characterised by the construction, 

design attributes, the use of the product within its design parameters and design margin… but 

increasingly characterised by the software solution (a product of the software design 

philosophy and development process). 

 

Most software un-reliability stems from the interaction of relatively simple components in 

emergent behaviours – i.e. as the system is exercised through contexts that the designer had 

not predicted, or foreseen. Simple solutions are characterised by a small number of well-

defined interfaces and coherent interface policies. Reliable systems tend to be simple (easy to 

validate) and the product of a uniform development philosophy (usually stemming from a 

single corporation, team, or even designer). 
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In principle, the processes of design and test that we use today characterise the residual error 

rates… evolutions of these processes and strict compliance allow us a modest percentage 

increase in integrity versus cost. High-integrity developers, typical of the security, aerospace 

or mass transport industries are using the strongest available mechanisms to assure themselves 

that they exceed their design goals. 

 

Even then, the absolute number of errors are a function of size, but with complexity, size is 

rising fast, probably beyond the capability of our process improvement to mitigate it. Given 

this potentially weakening position, at what point do we cease to be confident in the evidence 

supplied for certification events such as airworthiness? 

 

The ‘product line’ techniques give us a capability to instantiate many applications from a 

fixed number of basic components by skilful crafting of those components and careful 

configuration of variation. This reduces the high-risk (in error terms) custom proportion of the 

development thus reducing cost and increasing confidence in the overall product based on the 

provenance of the re-usable components. 

 

So what can we predict of the future? 

Can we architect systems of systems? Or do we fool ourselves into believing that we have 

sufficient definition to assure well-behaved interaction.  

 

As architects defer the instantiation of their problem as long as possible, the abstract 

definition of components also leaves us the flexibility to deploy components of a system with 

little regard to the physical geography of functions, other than resolving the communication 

performance. But in dealing with this ‘distribution’ we have to deal with the physical 

environment and any loss or error introduction that is now a part of the geographic 

disposition, i.e. the error environment, loss of a node or its communications and how the 

system counters those losses or errors. 

 

Can we make revolutionary jumps in process for increasing ‘right first time’ design, or 

improve the level of correctness by construction, perhaps by increasing our bias towards 

analytical proof, rather than post-development test, whose coverage is limited by manpower 

(which equates to cost and timescale) and does not readily scale.  
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Brute force compute approaches… synthetically trying to replicate the physical world will 

always be constrained by the technology available. Even if we could sufficiently synthesize 

the behaviour (without introducing error) we would still have to live with the approximation 

errors, rounding etc of the underlying machines. 

 

So can we look to other examples? Are there more mature industries that have already 

embraced this burgeoning complexity? 

 

Consider a single building in the construction industry as a system, we see that there is use of 

well-defined basic materials from many different suppliers, in well defined use-cases, with 

gated reviews (inspections) to legislated quality standards (building controls) both local and 

national, depending on local environmental conditions (earthquakes, hurricanes etc). We see 

specialist trades working on integrating solutions which are defined in detail by architects and 

underwritten by civil engineers to significant design margins (The twin towers were designed 

to withstand the impact of a jet airliner... but as conceived at the date of their design!). 

 

If we expand this idea to systems of systems i.e. towns or cities, we see continuous re-

generation, because of wear-out or obsolescence. Do we really architect the fundamental 

services (water, sanitation, power) for a design horizon to span centuries?  The reality is that 

we compromise on the efficiency of individual systems and the total solution to maintain the 

integration (London streets being a prime example). Brunel for instance is rightly revered, but 

shouldn’t it be for his foresight, as well as his engineering skill?…. This is the trait of a true 

System Architect. 

 

Larger scale systems imply more concurrent activity, more suppliers and different 

implementations. The effect of commercial competition and collaboration is probably easy for 

us to recognise in the construction domain – system solution being a trade of price, 

performance and materials. Would this really be any different in significant IT solutions? 

 

Finally, what can nature teach us? Nature builds some of the most complex organisms we 

know. Most are customised to a particular environment; they are highly ‘evolved’, built on 

countless iterations, ruthlessly discarding failures, continuously mutating to find the best 

adaptation to its environment. The natural process takes many ‘generations’ with very few 

species actually ever truly stabilising. Prototypes are allowed to evolve in parallel to select 
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optimal solutions, or all may be discarded if the mutation’s flaws outweigh its advantages at 

the time of assessment! 

 

Layered on top of the basic organism, nature teaches us that some behavioural attributes are 

trained, largely by repetition, without detailed understanding of the individual component 

interactions – just ask any golfer about his grip, stance, swing etc. A golfer is unlikely to 

comprehend the scientific ‘trajectory’ problem, even if he had the formal mathematics with 

which to compute a solution, would it be reasonable to believe he could calculate such a 

solution and deploy the actuators (hands, arms, legs) sufficiently fast enough to resolve the 

problem, especially when aggravated by a poorly sensed and inconsistent environmental 

variability (wind, humidity)? The breadth we call experience or instinct. 

 

Given that we can generate potential solutions, replicate, mutate and iterate far faster than 

natures programmes, would it not seem reasonable that ‘goal seeking’ solutions hold some 

value? Is stability a un-natural goal? Nature, it would appear, is way ahead of us. 

 

So, in summary, why do I feel we are unprepared? I suggest the empirical evidence is that the 

complexity of current systems is at the limit of, or even accelerating beyond, our ‘comfort 

zone’ from classic education and experience. Our ability to be confident in the solutions we 

generate, is not keeping pace with complexity growth. Larger IT systems suggest large 

collaborative, dispersed, commercially differentiated development teams, with an attendant 

jump in the factors that, in our current thinking, traditionally skew development 

comprehension, compounding risk. 

 

We need to find some revolutionary, novel jumps and stretch the thinking of our engineers. 

 

Thankyou. 


