

23 March 2021

“Engineering” Software Systems

Engineering Software Systems

23 March 2021

My views are built on a career of designing,
building or advising on control systems for
equipment that can adversely affect human lives
if it behaves incorrectly. These effects are
frequently a result of the power or energy of the
system involved to inflict damage; the safety
element of human proximity to machines; or even
environmental, societal or political damage that
mis-operation might cause.

At the outset, I consider myself accepting of,
although not content with, poorly designed
software systems whose malfunctions are purely
'inconvenient'. I accept that they may be
developed (designed and tested) to a lesser
standard. I remain suspicious that, in those cases,
little 'engineering' is involved (e.g. in websites or
isolated informational systems).

However as more systems become
interconnected, I feel concerned for the
behaviour of larger systems to the consequential
failure of such poorly thought through
component systems of that larger system.

What does “Engineering” mean?
For me the process of engineering (a product, or
service) is that intellectual sequence of steps at
deriving the 'best' solution to a problem.

The derivation of 'best' is actually quite difficult,
as it typically stems from a trade-off of lots of
functional attributes (e.g. safety, security,
availability, reliability etc) and non-functional
attributes (e.g. weight, size, material cost, cost of
engineering, cost of maintenance or ownership).

The stages of the engineering process are
typified by:

 Understanding the problem
 Considering potential solutions
 Analysing the efficacy of the solutions
 Selecting the 'most appropriate' solution

 Synthesising a product
 Validating the product
… and possibly many stages of analytical learning,
feedback and iteration.

Key to this technical realisation is the
'engineering judgement' stemming from
underpinning knowledge, understanding and
experience that is used in the analytical
‘selection’ process. These are the stages where
immaturity, inexperience or lack of domain
understanding can rapidly introduce significant
technical debt.

Note that poorly engineered solutions may still
yield a functional solution, but possibly lack all the
desired attributes.

Whilst these address the technical issues, no
engineering solution exists without a commercial
imperative and an innumerable number of
societal, environmental, political and economic
constraints. Therefore we have to consider the
impact of any potential solutions against:

 Market (users)
 Value (the benefit to the user, and what they

are willing to pay for that benefit)
 Competitive solutions and Intellectual

Property
 Development time (and cost)
 Product cost (Bill of materials)
 Product Lifetime
 Warranty/Service costs
The point is that this engineering regime is as
applicable to software as it would be to a
mechanical engineer.

Engineering the Real world
In my career (almost entirely in real-time
embedded systems) in all my roles as Systems
Architect, Designer and Engineer (Electronic

Engineering Software Systems

23 March 2021

Control Systems centric), Software Architect,
Designer and Engineer, that ‘underpinning
knowledge’ has had to extend beyond pure
software to the physically attached systems.

This has typically included a more than
rudimentary understanding of multiple physical
disciplines (notably electrical, magnetic,
mechanical, hydraulic, pneumatic), Mathematics
and Data Science, coupled with significant
understanding of Electronics.

Computer Science and Computational Methods
are my ‘home turf’.

I find I regularly interact with the company
experts in the various physical disiplines and have
to mentor or coach Software Engineers in the
realities of sensor physics or chemistry, electro-
mechanical actuation mechanisms, or
understanding basic physics of linear and
rotational systems (e.g. inertia, momentum, force,
torque, energy, power, work) as well as the
applied maths and how they relate to ‘time’ over
which the software engineer has some control.

For this ‘immersion’ over the last 40 years, I feel
extremely grateful. It has continued to satisfy my
thirst for knowledge and improved my ‘mental
models’. As a result, I now realise how little I really
know!

However, my world is inherently ‘unclean’,
frequently surviving on the most meagre data
that is acceptable, at the minimum precision
warranted to maximize robustness and minimise
cost.

Where the Data Scientist lives with expensive
lab-grade sensors, minimal noise and clean
datasets, with identifiable data correlation, I am
frequently:

 Looking to extract a trendline from sensor
measurements where individual readings
may be completely swamped by electrical
noise, mechanical, electrical or magnetic
hysteresis;

 Unable to use complex filters as the
significant lag or computational complexity is
unacceptable in spotting a fault, or delays
action in providing a machine response;

 Making measurements where the data can
vary over 5 or more orders of magnitude (the
extreme being 14 orders!) and still need the
last 2 bits of precision resolution;

 Faced with cascade failure affecting the data
from simple faults yet recognition of root
cause is a key goal, even if the sampled data
arrives out of order;

 Using synchronous sample timing for
measurement whose timing may be more
critical than the actual value;

 Dealing with system decisions whilst
elements of the system may be attempting to
adapt and defend from failures or undesired
effects before I am aware of it, masking the
raw reality (and information) that might
inform a higher-order adaptive model.

Confusingly also my sensor sets are often mis-
named – a speed sensor doesn’t typically
measure speed (but captures trigger events,
usually a measure of relative distance, and may
also capture direction).. and even then the notion
of instantaneous speed (time between 2 events),
short term average (the time between a selected
short run of events) or average speed (time for a
number of events related to say a single shaft
revolution)… are all ‘notional’ but may be relevant,
and that their derivatives (e.g. acceleration) are
fraught with mis-interpretation because they are
discontinuous samples.

Is Software "Engineered"?
Not all software is ‘bespoke'. In fact I suggest
that for many software developers (even
professional software developers) a significant
amount of their work is 'borrowed' from other
sources, if not outright (with due consideration
for copyright) copies, but certainly in design
approach, structure, computational method or
idea.

If such 'research' is in support of gaining the
appropriate knowledge and experience, that is
good… but if it is 'uninformed re-use', then that
has potential problems.

This same problem can apply to publicly available
material and even professionally supplied or
commercial software components.

This appears to be at the fundament of the
difference between a ‘software developer’ and a
‘software engineer’.

Supplier’s Engineering and
Warranty
From my work with high-integrity customers, we
wouldn’t ‘trust’ the engineering of any
component (software, electrical, mechanical)
being ‘supplied’ to include in our system implicitly
(i.e. taken at face value).

Using such a critical component would require
‘us’ as a customer being convinced of the
component engineering (analysis and process),
the manufacturing process, control of quality and

Engineering Software Systems

23 March 2021

performance and be subject to almost
continuous (and quite intrusive) ‘oversight’ in that
component's construction… and even then this
would not preclude failures, albeit very
infrequently, and typically from ‘bizarre’ (i.e. un-
considered, usually extreme) contexts.

Even these failures would require significant
investigation and feedback for corrective action
(with the intention to not only understand other
product vulnerability, but to eliminate as far as
possible future failure cases).

If the IP was critical to the product we might look
to own or make that component ourselves.

Few software component vendors today would
accept that level of ‘oversight’ from a single
customer, and it would be intolerable when trying
to serve many different customers for anything
other than ‘commodity’ product.

But underlying that principle of 'commodity'
product is that it can be engineered once
(typically in isolation of the specifics of the
application), and the engineering context is
acceptable to all future application uses. For a
Safety Relevant component in Functional Safety
this is often termed ‘Safety Element Out-of-
Context’ (SEOoC).

Even In the mature world of mechanical
engineering for example, mechanical engineers
have different 'grades' of bolts with well-defined
parameters that achieve most mainstream
applications, but still require 'custom' fasteners
for more extreme applications, or those with
specific and unusual combinations of attributes.

Unless taken to very 'primitive' components (c.f.
mechanical bolts) software parametric attributes
for 'portable' (application non-specific)
components would be very much more difficult
to define and have significant inter-dependency
on the interfacing systems (e.g. platform CPU,
processor cache and policies, compiler, clock
speed, bus widths, memory access times etc.).

Even common-place ‘library’ components are
difficult to validate for all possible deployment
circumstances.

Software (properly engineered) is
NOT cheap
My perception is that software has for too long
(i.e. at least since the general availability of
microcontrollers) been sold as a ‘cheap’ solution
for all sorts of engineering, without much concern
of the (physical/mathematical) complexity of the
problem. I too have historically, errantly, created
the same trap with my (largely mechanically
minded) masters.

Cheap, Fast, Flexible = over-sold
I once had to reflect back to some senior
automotive C-level executives an understanding
of what they were asking of a fuel control system,
by showing the development of the non-linear
controls they had ‘required’ … (originally
implemented via complex mechanical cams,
springs, levers and dashpots, which quickly
became unwieldy, heavy, uneconomic, unreliable
and un-maintainable) … and a proposed
replacement with a very simple embedded
solution (sensors, microcontroller, actuators).

The rotational and translational movements (in
this case rotational speed, timing and phasing
changes) were computationally quite low, with
the equivalent (linear, 2nd order) ‘maths’ in
software being relatively simple and easy to
validate, but would allow them much greater
manufacturing flexibility (ease of variation),
calibration savings, warranty savings etc.

But that ‘simple’ solution immediately led to a
runaway for the designers, with HUGE growth in
control complexity (non-linear relationships, high
functional dependency, modalities, security
integration from the System Engineers. This
assumption used the same argument as I had,
that these additional ‘simple’ control laws, all
could be implemented, at low cost, with some
software.

At this point we had lost sight of the complexity
being requested, because I had made the original
transition look so easy (and so profitable!) as the
design was easy to comprehend.

Unfortunately the reality is that complex design
costs money, to conceive solutions and validate,
no matter what implementation technology.

I tried interventions that related the complexity
to their (mechanical) backgrounds, including the
fact that in either mechanical or electrical control
solutions it would have been, like Babbage’s
machine, both:

 hard to conceive
 untenable in size, weight, cost, friction
However ‘software’ had been sold as having no
additional ‘componentry’ costs, having ultimate
flexibility (relationship between input and output)
and by definition it was all now cheap and simple.

Worse still, the robustness of an electronics and
software solution with additional simple (cheap)
sensors could now easily enhance the functional
dependence to allow a much wider operational
range, better performance or even operate in a
more adverse environment.

Engineering Software Systems

23 March 2021

The lack of a physical manifestation of software
complexity (change to weight size or
componentry) to mechanical engineers made
this a wonder solution.

In my ‘sales pitch’ of selling the software solution,
I had failed to establish that the (software)
engineering was still as complex and costly as
that required for a mechanical solution.

The implementation was the lowest part of the
cost make-up.

Prototyping and Product
Engineering
Systems engineering of novel designs (which
frequently include electronic and software
control systems) are necessary. Only simple, or
re-applied systems, get to be right first time.

System engineering is also frequently necessary
to ‘explore’ the sensitivity of the control of the
real world with sensor numbers and practical
(usually not ideal) placement, highly non-linear
actuator relationships (such as the control
mechanisms for driving an electro-magnetically
initiated, hydraulic servo-controlled high-
pressure actuator in fluid systems with
asynchronous pulsed pressure and multiple,
phase varying, dynamic, fast opening/closing
‘taps’).

During these prototyping stages of System
engineering we knowingly omit some attributes
of the design to focus on the aspects to be
analysed as relevant to the system in 'discovery'.

To me, this is the analog of a mechanical scale
model, or a space model, in an inappropriate
material , e.g. plastics used for mechanical
prototypes to judge key dimensions.

Unfortunately for software systems, those
'unreal attributes' are not so obvious and all too
often a product becomes littered with the (albeit
deliberate) naiveties of a prototype as the
software becomes 're-used' as it does 'most of
the job', and 'It's a good start point'(!).

Using production software development
techniques on prototype code is, typically,
prohibitively expensive. Generating a suitable
Software Architecture for future use in product,
clothed for prototype, is often infeasible as by
definition the System design is not fully realized
and stable (if it is, then the engineering has
probably already been done, and the System is
not novel).

The trick with prototypes is to ‘learn’ from them,
yet NOT to consider them product engineering. It
is also perfectly reasonable to ‘learn’ what

software solutions perform well, or are most
appropriate, and use that knowledge to feedback
to the architecture and high level designers as
key constraints.

Re-use at this level is ‘informative’ of design, NOT
of implementation, which may have to consider
many more detailed additional attributes.

Software Re-use - Myths
There are some well-established ground truths to
Software Re-use and the (additional) cost of
making software ‘re-usable’ as a design goal (e.g.
through Product Line management of intended
variation to achieve certain combinatorial
solutions).

However, the most often mis-guided view is that
ad-hoc re-use (typically of a design or just code)
is a simple and cost effective route to substantial
saving, improvement in reliability, or any other
goal, without first considering what the
components were originally designed to do and
the engineering evidence that supports them
being viable in their new ‘role’.

This is as true of software re-use from in-house
components, open-source software or even
commercial product that is sold as 'commodity'
or 'configurable'.

It’s also just as true when moving from Prototype
to Product. The additional attributes are integral
to the design and can't be simply 'added on', in
the same way that Quality, Safety, or Security
cannot be simply appended.

I wouldn’t re-use even an ‘elemental’ mechanical
bolt or machine screw in a new application based
solely on its apparent functionality (thread pitch,
diameter, shoulder etc…), so why would I do that
in software?

Which Engineering attributes are
valued?
In my professional software career across many
industries, some highly regulated, some more
'cottage industry' whose output bore more
resemblance to ‘prototype’ than product, there
have been many ‘sensitivities’ to the priority of
which aspects of engineering were valued.

In all cases there were always still more
engineering attributes that never made the list
(typically accepted as a commercial risk).

For instance, in Automotive today I see
‘Functional Safety’ (reaction to component
failure) struggling to make the mark in
appropriate System or Software design… and
little penetration of ‘Safety of the Intended

Engineering Software Systems

23 March 2021

Function’ (SOTIF) (action due to insufficient
functionality, or foreseeable mis-use/mis-
operation).

The latter SOTIF issue might also suggest
heightened sensitivity when replacing ‘human
operation’ with a ‘rule-based’ system that is not
‘deducible’ by a human.

I suggest that challenging examples will exist
when considering the more statistical or
probabilistic ‘decision’ outcomes of data analytic
methods such as Machine Learning or Artificial
Intelligence.

Bigger Engineering challenges to
come
The existing lack of engagement on 'engineering'
factors for software may prove to be ‘minor cost
excursions’ compared with the dynamic cost
‘feast’ that is digital security in all its forms
(privacy, confidentiality, integrity etc…).

For any embedded system that is expected to
have longevity in the market, these engineering
costs are significant, both at original product
engineering, but significantly in the cost of
maintenance.

Even assuming the end-user pays for the
engineering of the update, the system cost
(transmission time, memory requirements,
transmission security, energy usage) may be a
significant element of the original engineering
design consideration.

For the assumed ‘cheap’ (to purchase and
deploy), wireless connected, self-powered, IoT
type systems , they will become a dominant cost
that is only sustainable through sheer volume of
product sales.

Product Cost vs Cost of
Ownership
Traditional (since 1980s, largely isolated, single
purpose) embedded systems software was for
most cases assumed to be invariant over its
lifetime. The software maintenance cost was
therefore zero. This is reflected in the warranty
and maintenance cost expectations.

With no lifetime maintenance, and precious little
'manufacturing' cost (programming an image is
near zero cost), embedded system software
costs were those of development costs, and for
many industries these were recovered as part of
the final product (seen/sold as electronic
hardware) costs (the software load not
differentiating the product value).

Driving the cost of such embedded software
developments down was therefore key to
‘productivity’ and ‘profitability’, often precluding
significant ‘engineering’.

Functionality and Self Diagnosis
Historically this was possible, as the functionality
(software task) assumed a static configuration of
componentry (including any redundant
capabilities for failures, where necessary) and an
unchanging (mostly rule-based) requirement on
behaviour.

Electronic component failures, like software
errors, happen fast, with typically no discernible
‘onset of failure’ precursor. Condition based
monitoring of these components is essentially
useless, so an appropriate reaction to failure has
to be clearly engineered.

Self diagnosis typically majored on failures of
actuators and sensors (real-world interfaces,
more likely to wear-out, corrode or be vulnerable
to overloads or mis-use), rather than internal
components. The emphasis of embedded system
diagnosis is typically on providing a service
engineer with sufficient fault information to
identify, replace and validate any maintenance
requirement.

Any 'variant' functionality was accommodated
through simple configuration or calibration and
was pre-validated, and accepted as correct for
the operating environment.

Future Proofing
In today's climate, 'future-proofing' may explicitly
require software updates for an otherwise pre-
constrained system (electronic components,
sensors, actuators).

This poses major (and costly) validation issues:

 the deployment context and system
connectivity may be so diverse to have no
guarantees that product validation (the read-
across of validation evidence to a new
context) can be argued as acceptable;

 the dynamics of the connected system may
be an uncontrollable feature (e.g. due to
wireless nature, route associativity, signal
paths and strengths, router response times);

 the connected system interactions may be
under continuous evolution from
development, or adaptation due to
algorithmic optimization (e.g. signal to noise
ratio adaptations, signal ‘signature’ for
security)

Engineering Software Systems

23 March 2021

 other components of the larger system may
also be replaced, without notice, with
changes in functionality.

In this climate it is unlikely that we can design to
accommodate all possible futures, and even If we
could it would be uneconomic and impractical to
validate for all possible combinations of
deployment over the product lifetime.

This implies that every change in functionality
(new feature, even on existing hardware) has
associated with it an engineering cost in both
design and validation of that feature which is not
associated with the original product hardware.

Cost Recognition?
Does this mean that Software will at last be
recognised as a ‘cost’, independent of the
electronic hardware in the embedded market?

Further, some requirements, such as Security, are
by their nature evolutionary, suggesting a
periodic cost of software ownership to secure
non-isolated systems from evolving threats,
either directly, or by virtue of their connectivity.

Who Pays?
There appears to be a real blind spot amongst
producers of these traditional embedded
software systems to the difference between
engineering development costs (historically the
most significant costs to amortise into product
sales for embedded systems) versus the
maintenance costs (including any re-validation of
changes) of ‘connected and maintained’ systems
and especially those that are likely to go in that
recurring cost category (e.g. ‘Safety and
Security’).

We could of course build like Isambard Kingdom
Brunel, in a horse and cart era, and over-engineer
construction for the future heavy-weight needs,
that amazingly seems engineered sufficiently to
deal with vehicles 200 years into the future.

The reality however is that even in Brunel’s time
heavy horses and laden cart (total 10 tonnes say),
versus modern articulated rig (max 44tonnes in
UK) suggest only a factor of 4 to 5 change.

Although a brilliant engineer, even he met with
‘the prohibitive costs’ of engineering.

The other major differential in modern markets is
the pace of technology adoption, which means a
100-year future-proofing in electronics and
software would not be credible; even a 10-year,
non-disruptive pattern of change would be
exceedingly challenging to proof against.

Modern consumer electronics is often designed
for a half-life of about 2 years for portable
devices and 5 years for larger (electronically
controlled) domestic white goods. The general
consumer would possibly expect those goods to
have a realistic service life of double that.

In the UK, vehicles are scrapped, on average, at
about 14 years, with the average vehicle age (on
the road) of 8 years.

The suggestion of a 10 year life for future-
proofing thus seems a very reasonable
expectation.

Automotive software example
There are already precedents that suggest that
ownership of software will become significant.

Automotive testing and inspection is already
suggesting that the annual ‘pass’ will require that
“all available software ‘patches’” be installed as a
test condition. This suggestion already places an
onus on the vehicle manufacturers to publish (at
least to the testing authority) ‘latest patches’
within a defined deadline of learning of an issue.

It is unclear who becomes responsible for
ensuring that the patches are a suitably
compatible set, for the vehicle, or with each
other; who has responsibility for installing them,
and validating that they still provide all possible
functionality, functional safety etc. or who pays
for both of these issues.

All of this assumes that such ‘updates’ are able to
be accommodated in the existing electronic
platforms.

The Cost of Professionally
Engineered Software
Software development, as an industry in all its
forms and all its applications, is a HUGE remit, and
as previously stated, whilst I have no problem
with non-critical or low-impact failure systems
(such as websites and some mobile Apps or IT
systems whose loss or mis-operation is merely
‘inconvenient’) being written with less
professionalism (even economically
constrained), I take great exception to software
that is used in devices that safeguard, protect
and secure me, my family, my fellow citizens and
the planet we live on being inadequately
engineered.

The real problem is who is willing to pay for
software to be ‘engineered’ properly?

Can we afford NOT to make that investment in
critical applications?

Engineering Software Systems

23 March 2021

Can we afford for such systems NOT to be
developed by ‘engineers’ who can provide
evidence to substantiate that the design and
product validation shows it ‘fit for purpose’?

Even in the mechanical world, a large part of the
population are still willing to accept unwarranted
‘re-manufactured’ replacements in almost every
system, as a cost saving, without much thought
for the original engineering (and validation) that
went into the original part design and
manufacture.

Even engineers succumb to this ‘economy’ when
they are capable of comprehending the risk.

As Engineers we should at least consider
whether a ‘look-alike’ fulfils all the same
functional and non-functional criteria of the
original part, and the implications of its failure to
do so.

A good Software Development
Process does not ensure good
Engineering
Whilst having a well-defined (and hopefully
mature, incorporating feedback and some
elements of 'correction' if not 'optimisation')
software development process helps ensure the
'quality' and ‘repeatability’ of the software
development (production) process, it contributes
little when considering the suitability or
functional ability of the software solution to
deliver the requirement, or solve the original
problem.

Some of that validation of the appropriateness of
the solution is down to good Systems
Engineering, but even that doesn't ensure the
Software Architecture and Design is appropriate,
that the structure and behaviour of the software
solution is appropriate, and can support the
expected future flexibility of configuration,
performance, or scale.

A highly supportive software development during
system engineering, as discussed in earlier
paragraphs, can learn substantially from
prototyping and ‘inform’ the design of solution
efficacy.

